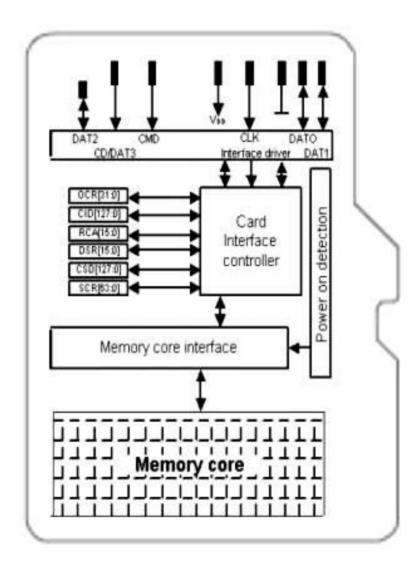


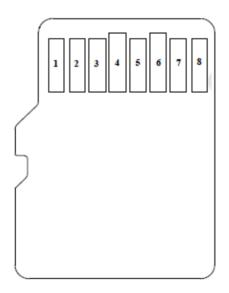
microSD C10I card series

Description

Transcend industrial-grade microSD cards offer greater design flexibility and cost savings. Despite their compact size, the microSD cards have excellent temperature flexibility from -40°C to 85°C. The cards are manufactured with high-quality controller and MLC flash chips, providing excellent shock and vibration resistance and low power consumption that help to bring the performance and reliability advantages of industrial memory cards to small form factor devices.


Features

- Manufactured with Industrial spec NAND Flash memory
- Operating Temperature: -40 ~ 85°C
- Compatible with SD Specification Ver. 3.01
- Supports Speed Class Specification up to Class 10
- Built-in ECC and Wear leveling
- Support ESD IEC 61000-4-2
- Read Retry
- Support S.M.A.R.T. function


Architecture

Pin Definition

	SD Mode		SPI Mode		
Pin No.	Name	Description	Name	Description	
1	DAT2	Data Line [Bit2]	RSV	Reserved	
2	CD/DAT3	Card Detect / Data Line [Bit3]	CS	Chip Select	
3	CMD	Command / Response	DI	Data In	
4	V_{DD}	Supply voltage	V_{DD}	Supply voltage	
5	CLK	Clock	SCLK	Clock	
6	V_{SS}	Supply voltage ground	V_{SS}	Supply voltage ground	
7	DAT0	Data Line [Bit0]	DO	Data out	
8	DAT1	Data Line [Bit1]	RSV	Reserved	

Specifications

Physical Specification				
Form Factor		microSD		
SD specification		SD3.01		
	Length	11.00 ± 0.1		
Dimensions (mm)	Width	15.00 ± 0.1		
	Height	0.7 ± 0.1		

Performance								
Model P/N	Sequential Read*	Sequential Write*	Random Read (4KB)*	Random Write (4KB)*				
TS8GUSDC10I	24	16	3.5	0.5				
TS16GUSDC10I	24	16	3.5	0.5				
TS32GUSDC10I	24	17	3.5	0.5				
TS64GUSDC10I	24	22	3.7	0.5				

Note: Maximum transfer speed recorded

 $^{^*}$ 25 $^\circ$ C , 4GB DRAM, Windows $^\circ$ 7 with Transcend RDF5, benchmark utility Crystal DiskMark , copied file 1000MB, unit MB/s

Endurance						
	TS8GUSDC10I	15				
Town Divisor Musiation (T.D.)	TS16GUSDC10I	30				
<u>T</u> era <u>B</u> ytes <u>W</u> ritten (T.B.)	TS32GUSDC10I	60				
	TS64GUSDC10I	120				

^{*}TBW is based on Transcend internal standard to calculate how much data can be written into the drive.

^{*1} TeraByte=1,000,000,000,000 bytes

Bus Mode/ Power Consumption					
		Value(Max.)			
	Read	100mA			
Default Mode (25MHz)	Write	100mA			
(201112)	Idle	0.5mA			
	Read	150mA			
Default Mode (25MHz,XPC=1)	Write	150mA			
(2011112)/(1 0 - 1)	Idle	0.5mA			
	Read	200mA			
High Speed mode (50MHz)	Write	200mA			
(30141112)	Idle	0.5mA			

Note: Power consumption is referred to Section 6.6.3 of the SDA Physical Layer Specification, Version 3.01

Environmental Specifications				
Operating Temperature	- 40°C to 85°C			
Storage Temperature	- 40°C to 85°C			
Durability	10.000 mating cycles			
Drop test	1.5m free fall			
Regulator	CE/FCC/BSMI			

Product Description

1.Features

1.1 Lock Function

Support for password protected locking and unlocking of SD devices. It uses the LOCK/UNLOCK command(CMD42) which is available in SD command sets.

1.2 Built-in ECC Engine

In event of errors, the combined data allow the recovery of the original data. The number of errors that can be recovered depends on the algorithm used.

1.3 Wear-leveling

This function means the data are no longer tied to a single physical area, which can extend Card's life expectancy.

1.4 Read Retry

The function allows the read voltage to be dynamically adjusted such that read errors are decreased or even eliminated.

1.5 Early Move

The function provides a mechanism to avoid read disturbance. Built-in ECC is used to detect and correct data bit error. If error bits reaches the default threshold, the data will be moved to another good block and the original block should be erased to avoid un-correct error in advance.

1.6 S.M.A.R.T. function

Transcend Industrial SD Card supports S.M.A.R.T. command (CMD56) that allows the user to read the health information of the SD. Transcend also define some innovated S.M.A.R.T. features which allows the user to

evaluate the status of the SD in a much more efficient way.

Name	Offset (byte)	Length (byte)	Command Description	
Flash ID	[0:8]	9	Flash ID.	
IC Version	[9:A]	2	IC version.	
FW Version	[B:C]	2	Firmware version.	
CE Number	[E]	1	CE number.	
Total Bad Block Count	[20:23]	4	Total bad block count.	
Spare Block Rate	[40:41]	2	(Total Spare Block –New Bad Block) / Total Spare Block.	
Total Erase Count	[50:53]	4	Total erase count.	
Health Status	[60:61]	2	(Flash Endurance - Avg Erase Count) / Flash Endurance.	
Average Erase Count-Low Byte	[62:63]	2	Average erase count-low byte. (ex. 12345678H. The low byte is 5678H)	
Min Erase Count-Low Byte	[64:65]	2	Min erase count-low byte. (ex. 12345678H. The low byte is 5678H)	
Max Erase Count-Low Byte	[66:67]	2	Max erase count-low byte. (ex. 12345678H. The low byte is 5678H)	
Average Erase Count-High Byte	[68:69]	2	Average erase count-high byte. (ex. 12345678H. The high byte is 1234H)	
Min Erase Count-High Byte	[6A:6B]	2	Min erase count-high byte. (ex. 12345678H. The high byte is 1234H)	
Max Erase Count-High Byte	[6C:6D]	2	Max erase count-high byte. (ex. 12345678H. The high byte is 1234H)	
Power Up Count	[70:73]	4	Power off/on count.	
Abnormal Power Off Count	[80:81]	2	Suddenly power off count.	
Product Marker	[B0:B8]	9	Default set Transcend.	

2.Bus Topology

The SD Memory Card system defines two alternative communication protocols:SD and SPI. The host system can choose either one of modes. The card detects which mode is request by host when the reset command is received and expects all further communication to be in the same communication mode.

2.1 SD Bus

For more details, refer to Section 3.5.1 of the SDA Physical Layer Specification, Version 3.01.

2.2 SPI Bus

For more details, refer to Section 3.5.2 of the SDA Physical Layer Specification, Version 3.01.

3.SD card Register information

3.1 OCR register

The OCR register stores the VDD voltage profile of the card, refer to Section 5.1 of the SDA Physical Layer Specification, Version 3.01 for more information.

3.2 CID register

The Card Identification (CID) register is 128 bits wide. It contains the card identification information used during the card identification phase. Every individual flash card shall have a unique identification number. The structure of the CID register is defined in the following paragraphs:

Name	Field	Width	CID-slice
Manufacturer ID	MID	8	[127:120]
OEM/Application ID	OID	16	[119:104]
Product name	PNM	40	[103:64]
Product revision	PRV	8	[63:56]
Product serial number	PSN	32	[55:24]
reserved		4	[23:20]
Manufacturing date	MDT	12	[19:8]
CRC7 checksum	CRC	7	[7:1]
not used, always '1'	-	1	[0:0]

MID

An 8-bit binary number that identifies the card manufacturer. The MID number is controlled, defined, and allocated to a SD Memory Card manufacturer by the SD-3C, LLC. This procedure is established to ensure uniqueness of the CID register.

• OID

A 2-character ASCII string that identifies the card OEM and/or the card contents (when used as a distribution media either on ROM or FLASH cards). The OID number is controlled, defined, and allocated to a SD Memory Card manufacturer by the SD-3C, LLC. This procedure is established to ensure uniqueness of the CID register.

PNM

The product name is a string, 5 ASCII characters long. PNM can be customized by Transcend

PRV

The product revision is composed of two Binary Coded Decimal (BCD) digits, four bits each, representing an "n.m" revision number. The "n" is the most significant nibble and "m" is the least significant nibble. As an example, the PRV binary value field for product revision "6.2" will be: 0110 0010

PSN

The Serial Number is 32 bits of binary number. PSN Number can be customized by Transcend

MDT

The manufacturing date composed of two hexadecimal digits, one is 8 bit representing the year(y) and the other is four bits representing the month(m).

The "m" field [11:8] is the month code. 1 = January.

The "y" field [19:12] is the year code. 0 = 2000.

As an example, the binary value of the Date field for production date "April 2001" will be: 00000001 0100.

MDT can be customized by Transcend

CRC

CRC7 checksum (7 bits).

3.3 CSD register

The following sections describe the CSD fields and the relevant data types for the standard and High Capacity SD Memory Card. CSD Version 1.0 is applied Capacity SD Memory Card and CSD Version is applied to 2.0 is applied to only the High Capacity SD Memory Card. The field name in parenthesis is set to fixed value and indicates that the host is not necessary to refer these fields. The fixed values enables host, which refers to these fields, to keep compatibility to CSD Version 1.0. The Cell Type field is coded as follows: R = readable, W(1) = writable once, W = multiple writable.

3.3.1 CSD Register Structure

CSD_STRUCTURE	CSD Structure version	Card capacity
0	CSD Version1.0	Standard Capacity
1	CSD Version2.0	High Capacity and Extended Capacity
2-3	reserved	

3.3.2 CSD Register Structure (CSD Version 1.0)

Name	Field	Width	Cell Type	CSD-slice
CSD structure	CSD_STRUCTURE	2	R	[127:126]
reserved	-	6	R	[125:120]
data read access-time-1	TAAC	8	R	[119:112]
data read access-time-2 in CLK cycles (NSAC*100)	NSAC	8	R	[111:104]
max. data transfer rate	TRAN_SPEED	8	R	[103:96]
card command classes	CCC	12	R	[95:84]
max. read data block length	READ_BL_LEN	4	R	[83:80]
partial blocks for read allowed	READ_BL_PARTIAL	1	R	[79:79]
write block misalignment	WRITE_BLK_MISALIGN	1	R	[78:78]
read block misalignment	READ_BLK_MISALIGN	1	R	[77:77]
DSR implemented	DSR_IMP	1	R	[76:76]
reserved	-	2	R	[75:74]
device size	C_SIZE	12	R	[73:62]
max. read current @VDD min	VDD_R_CURR_MIN	3	R	[61:59]
max. read current @VDD max	VDD_R_CURR_MAX	3	R	[58:56]
max. write current @VDD min	VDD_W_CURR_MIN	3	R	[55:53]
max. write current @VDD max	VDD_W_CURR_MAX	3	R	[52:50]

Name	Field	Width	Cell Type	CSD-slice
device size multiplier	C_SIZE_MULT	3	R	[49:47]
erase single block enable	ERASE_BLK_EN	1	R	[46:46]
erase sector size	SECTOR_SIZE	7	R	[45:39]
write protect group size	WP_GRP_SIZE	7	R	[38:32]
write protect group enable	WP_GRP_ENABLE	1	R	[31:31]
reserved for MultiMediaCard compa	tibility	2	R	[30:29]
write speed factor	R2W_FACTOR	3	R	[28:26]
max. write data block length	WRITE_BL_LEN	4	R	[25:22]
partial blocks for write allowed	WRITE_BL_PARTIAL	1	R	[21:21]
reserved	-	5	R	[20:16]
File format group	FILE_FORMAT_GRP	1	R/W(1)	[15:15]
copy flag (OTP)	COPY	1	R/W(1)	[14:14]
permanent write protection	PERM_WRITE_PROTECT	1	R/W(1)	[13:13]
temporary write protection	TMP_WRITE_PROTECT	1	R/W	[12:12]
File format	FILE_FORMAT	2	R/W(1)	[11:10]
reserved	<u>'</u>	2	R/W	[9:8]
CRC	CRC	7	R/W	[7:1]
not used, always'1'	-	1	-	[0:0]

3.3.3 CSD Register (CSD Version 2.0)

Name	Field	Width	Value	Cell Type	CSD-slice
CSD structure	CSD_STRUCTURE	2	01b	R	[127:126]
reserved	-	6	00 0000ь	R	[125:120]
data read access-time	(TAAC)	8	0Eh	R	[119:112]
data read access-time in CLK cycles (NSAC*100)	(NSAC)	8	00h	R	[111:104]
max. data transfer rate	(TRAN_SPEED)	8	32h or 5Ah	R	[103:96]
card command classes	ccc	12	01x110110101b	R	[95:84]
max. read data block length	(READ_BL_LEN)	4	9	R	[83:80]
partial blocks for read allowed	(READ_BL_PARTIAL)	1	0	R	[79:79]
write block misalignment	(WRITE BLK MISALIGN)	1	0	R	[78:78]
read block misalignment	(READ_BLK_MISALIGN)	1	0	R	[77:77]
DSR implemented	DSR_IMP	1	x	R	[76:76]
reserved	-	6	00 0000b	R	[75:70]
device size	C_SIZE	22	00 xxxxh	R	[69:48]
reserved	-	1	jo	R	[47:47]
erase single block enable	(ERASE BLK EN)	1	1	R	[46:46]
erase sector size	(SECTOR_SIZE)	7	7Fh	R	[45:39]
write protect group size	(WP_GRP_SIZE)	7	0000000b	R	[38:32]
write protect group enable	(WP GRP ENABLE)	1	0	R	[31:31]
reserved		2	00b	R	[30:29]
write speed factor	(R2W_FACTOR)	3	010b	R	[28:26]
max. write data block length	(WRITE BL LEN)	4	9	R	[25:22]
partial blocks for write allowed	(WRITE_BL_PARTIAL)	1	0	R	[21:21]
reserved	-	5	00000ь	R	[20:16]
File format group	(FILE FORMAT GRP)	1	0	R	[15:15]
copy flag (OTP)	COPY	1	x	R/W(1)	[14:14]
permanent write protection	PERM_WRITE_PROTECT	1	x	R/W(1)	[13:13]
temporary write protection	TMP WRITE PROTECT	1	х	R/W	[12:12]
File format	(FILE_FORMAT)	2	00b	R	[11:10]
reserved	-	2	00b	R	[9:8]
CRC	CRC	7	xxxxxxxb	R/W	[7:1]
not used, always'1'	-	1	1	-	[0:0]

3.4 RCA register

The writable 16-bit relative card address register carries the card address that is published by the card during the card identification. Refer to Section 5.4 in the SDA Physical Layer Specification, Version 3.01 for more information.

3.5 SCR register

In addition to the CSD register, there is another configuration register named SD CARD configuration Register, SCR provide information on the SD memory card's special feature that were configured into the given card.Refer to Section 5.6 in the SDA Physical Layer Specification, Version 3.01 for more information.

3.6 SSR register

The SD status contains status bits that are related to the SD memory card proprietary features and may be used for future application-specific usage. The SD Status structure is described in Section 4.10.2 in the SDA Physical Layer Specification, Version 3.01.

Order information

Capacity	Transcend Part Number
8GB	TS8GUSDC10I
16GB	TS16GUSDC10I
32GB	TS32GUSDC10I

The technical information above is based on industry standard data and has been tested to be reliable. However, Transcend makes no warranty, either expressed or implied, as to its accuracy and assumes no liability in connection with the use of this product. Transcend reserves the right to make changes to the specifications at any time without prior notice. Due to the complexity and variety of industrial applications, for special applications and environments, it is strongly suggested to contact Transcend or its authorized resellers beforehand for compatibility confirmation.

TAIWAN

E-mail: sales-tw@transcend-info.com

USA

Los Angeles:

E-mail: sales-us@transcend-info.com

Maryland:

E-mail: sales-us@transcend-info.com

Miami:

E-mail: sales-us@transcend-info.com

Silicon Valley:

E-mail: sales-us@transcend-info.com

GERMANY

E-mail: sales-de@transcend-info.com

THE NETHERLANDS

E-mail: sales-nl@transcend-info.com

United Kingdom

E-mail: sales-uk@transcend-info.com

JAPAN

E-mail: sales-jp@transcend-info.com

KOREA

E-mail: sales-kr@transcend-info.com

CHINA

E-mail: sales@transcendchina.com

HONG KONG

E-mail: sales-hk@transcend-info.com

Revision History

Version	Date	Note
1.0	2016/05/23	The 1 st edition
1.1	2016/08/01	Support CMD56 (S.M.A.R.T. function)
1.2	2016/10/05	Revised CMD56 (S.M.A.R.T. function)
		Revise pin definition of SPI mode
1.3	2018/09/27	Remove TS64GUSDC10I.
1.4	2019/07/03	Add TS64GUSDC10I
1.5	2019/10/28	Update Performance
1.6	2020/04/08	Update S.M.A.R.T. function

Tento produkt můžete zakoupit u společnosti AutoCont IPC a.s.

AutoCont IPC a.s.

Váš dodavatel průmyslových počítačů, komponent a speciálních průmyslových IT systémů.

Uhlířská 1064/3, 710 00 Ostrava, Česká republika

✓ obchod@autocont-ipc.cz

+420 552 301 002

www.autocont-ipc.cz

PRŮMYSI OVÉ POČÍTAČE

fanless embedded PC, do racku, ...

POČÍTAČE S DISPLEJEM

panelové PC, terminály, do vozidel, ...

AUTOMATIZACE A SBĚR DAT

převodníky, karty, moduly, switche, ...

PERIFERIE A KOMPONENTY

monitory, klávesnice, desky, skříně, ...

NOTEBOOKY A TABLETY

odolné, windows, android, IP65, ...

INFORMAČNÍ KIOSKY

interiérové, venkovní, ...

MEDICÍNSKÁ TECHNIKA

počítače, tablety, LCD, klávesnice, ...

SOFTWAROVÁ ŘEŠENÍ

pro výrobu, zaměstnance, kiosky, ...

PŘEJÍT DO E-SHOPU

eshop.autocont-ipc.cz

DOPRAVA ZDARMA

Doprava zdarma v ČR a SR při objednávce nad 10 000 Kč bez DPH nebo nad 400 FUR

PRODLOUŽENÁ ZÁRUKA

Záruka 2 roky na vyráběné počítače s možností jejího prodloužení až na 5 let

ODMĚNA ZA VĚRNOST

Pravidelní zákazníci u nás nakupují za nižší ceny. Výše slevy se odvíjí od realizovaného obratu

SERVIS ON-SITE A IN-TIME

K projektovým dodávkám nabízíme rozšířenou podporu a servis s garancí výměny zařízení do 48 hodin.